Linear Prediction of Arma Processes with Infinite Variance

نویسندگان

  • Daren B. H. CLINE
  • Peter J. BROCKWELL
چکیده

In order to predict unobserved values of a linear process with infinite variance, we introduce a linear predictor which minimizes the dispersion (suitably defined) of the error distribution. When the linear process is driven by symmetric stable white noise this predictor minimizes the scale parameter of the error distribution. In the more general case when the driving white noise process has regularly varying tails with index cr, the predictor minimizes the size of the error tail probabilities. The procedure can be interpreted also as minimizing an appropriately defined /,-distance between the predictor and the random variable to be predicted. We derive explicitly the best linear predictor of X,,,, in terms of X,, . , X, for the process ARMA(l, 1) and for the process AR(p). For higher order processes general analytic expressions are cumbersome, but we indicate how predictors can be determined numerically.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weighted Least Absolute Deviations Estimation for Arma Models with Infinite Variance

For autoregressive and moving-average (ARMA) models with infinite variance innovations, quasi-likelihood based estimators (such as Whittle’s estimators ) suffer from complex asymptotic distributions depending on unknown tail indices. This makes the statistical inference for such models difficult. In contrast, the least absolute deviations estimators (LADE) are more appealing in dealing with hea...

متن کامل

Portmanteau Tests for Arma Models with Infinite Variance

Autoregressive and moving-average (ARMA) models with stable Paretian errors is one of the most studied models for time series with infinite variance. Estimation methods for these models have been studied by many researchers but the problem of diagnostic checking fitted models has not been addressed. In this paper, we develop portmanteau tests for checking randomness of a time series with infini...

متن کامل

Testing and modelling autoregressive conditional heteroskedasticity of streamflow processes

Abstract. Conventional streamflow models operate under the assumption of constant variance or season-dependent variances (e.g. ARMA (AutoRegressive Moving Average) models for deseasonalized streamflow series and PARMA (Periodic AutoRegressive Moving Average) models for seasonal streamflow series). However, with McLeod-Li test and Engle’s Lagrange Multiplier test, clear evidences are found for t...

متن کامل

Kalman Filters and Arma Models

The Kalman filter is the celebrated algorithm giving a recursive solution of the prediction problem for time series. After a quite general formulation of the prediction problem, the contributions of its solution by the great mathematicians Kolmogorov and Wiener are shorthly recalled and it is showed as Kalman filter furnishes the optimal predictor, in the sense of least squares, for processes w...

متن کامل

Hourly Wind Speed Prediction using ARMA Model and Artificial Neural Networks

In this paper, a comparison study is presented on artificial intelligence and time series models in 1-hour-ahead wind speed forecasting. Three types of typical neural networks, namely adaptive linear element, multilayer perceptrons, and radial basis function, and ARMA time series model are investigated. The wind speed data used are the hourly mean wind speed data collected at Binalood site in I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001